US Spaceflight for the future [update]

Another planet is coming this way. It is inhabited. We are being groomed to be petted or we are being groomed to be destroyed. One of those 2 things.

Oh and some here will be leaving with them as they depart.

Discuss...

get back on your meds, junior mint
 
ahaha

Hollywood is using the MAF facility in New Orleans as a huge soundstage, first for GI JOE2, and 2 movies from universals (secret) and disney and MGM are in talks to get it as well

it's where they weld the giant exterior fuel tanks (orange) for shuttle
 
In April, it was revealed that experiments conducted aboard the ISS around the 2006-2007 period, but which had only just completed the analysis stage, showed that drugs stored aboard the station for long periods of time lost some of their potency (effectiveness).

For the experiment, conducted by JSC in Houston, four boxes of drugs, each containing 35 different medications, were flown to the ISS, while four identical boxes were kept on the ground at JSC. The four boxes of drugs returned to Earth after varying amounts of time spent on the station, with the first returning after 13 days and the last returning after 28 months in space.

The results were both startling and unexpected: the longer the drugs had been in space, the more potency they had lost. All of this occurred before the expiration date of the drugs, meaning that the space environment somehow negatively affected the drugs and decreased their effectiveness.

Scientists theorize that this could be caused by a number of space-specific factors, including microgravity, radiation, vibrations, a carbon-dioxide rich atmosphere, and variations in temperature and humidity. As such, research into improved drug storage containers for spaceflight to mitigate this degradation of potency is now underway.

Such degradation of potency is a potentially serious issue for future long-duration BEO exploration since astronauts on those missions, without access to advanced medical facilities, would need to take medication for certain ailments. In this case, reduced potency in drugs caused by long-term storage in space could render the drugs useless or at best severely limited in their effectiveness in combating an illness.

Furthermore, in September, another potentially very serious condition was revealed that could have big impacts on future BEO exploration missions. Again conducted in the 2005-2006 period, this revelation was that long-term microgravity can (sometimes seriously) adversely affect astronauts’ visual acuity.

In a survey of roughly 300 astronauts, 30 percent of astronauts who had flown short-duration (about 2 week) missions on the Space Shuttle and 60 percent of astronauts who had flown long duration (about 6 month) missions on the ISS reported experiencing vision problems as a result of spaceflight.

While some astronauts noted an improvement in vision once they returned to Earth, for one astronaut the vision changes were permanent. According to the medical journal Ophthalmology, one astronaut stated that he could “only see the Earth clearly while looking through the lower portion of his progressive reading glasses.”

The disorder appears to be similar to an Earth-based condition called papilledema, which, if left unchecked, can lead to blindness.

Since the visual degradation appears to increase proportional to the amount of time an astronaut spends in space, this is obviously a concern since, while ISS missions last around 6 months, future missions to Mars could last 3 years or more.

Since no crews in this study have spent more than six months on the ISS, it is not known at this stage whether vision will continue to degrade with time spent in space or whether the degradation will eventually plateau.

Scientists theorize that the problem could be caused by increased pressure on the head and eyes by spinal fluid which is not pulled down in microgravity as it is on Earth.

The exact cause however in unknown at this time, and research is currently ongoing aboard the station, including regular inflight Magnetic Resonance Imaging (MRI) scans of astronauts’ eyes and trails of new glasses which can adjust for visual impairments.

While the above two discoveries present problems for future BEO missions, the station is also teaching us solutions to other issues. In December, a new discovery from an experiment conducted by the Japanese space agency, JAXA, was announced. The discovery showed that astronaut bone loss in microgravity, long thought of as a serious problem for BEO missions, could be severely reduced simply by having astronauts take standard osteoporosis drugs.

Astronauts in microgravity typically lose 5 to 7 percent of their bone density in 6 months even when exercising for two hours per day. The study of five astronauts found that taking bisphosphonates once a week in addition to exercising significantly reduced bone density loss, with only 1 percent of bone density being lost in the femur and bone density in the hip actually showing a 3 percent increase.

Despite critics’ claims that the ISS is a useless anchor to Low Earth Orbit (LEO) for the next decade, and that there is nothing left to learn in LEO, the evidence is clear: the ISS, only 6 months into its utilization phase, is already teaching us extremely valuable information about long-duration spaceflight.

While not all ISS experiments may be particularly glamorous or exciting, the fact remains that the knowledge gleaned from these experiments is absolutely essential to our future progression in space and on Earth.

While microgravity certainly presents challenges for the future, so far ISS has not identified any showstoppers to BEO exploration, and the knowledge gained from station, both in terms of direct scientific data and engineering know-how, will pay dividends in future exploration missions.

As detailed, most of the experiments discussed in this article were performed in the 2005-2007 timeframe, when ISS was still in its construction phase and had nowhere near the scientific capabilities it has now.

Due to the amount of time it takes to conduct an experiment in space and then analyze and publish the results, the fruits of a fully assembled and operational ISS likely won’t be seen for a number of years, meaning that ISS has much more to give over the coming years than has been seen in the past.

Looking ahead to 2012:

Looking to next year, the ISS is set to enter its first full year as a fully assembled and operational space laboratory. In addition to the start of CASIS operations, a number of interesting experiments are due to be performed on ISS next year.

The first is called ISS as a Testbed for Analogue Research, or ISTAR.

ISTAR will involve using the ISS as an analogue to investigate some issues of BEO exploration, such as introducing time-delays into ISS communications similar to those experienced on BEO missions while at the same time giving the ISS crew full control of their timeline in order to decrease their dependency on ground control.

This experiment is designed to identify and iron out any problems associated with time delays and autonomous crew planning prior to undertaking BEO missions in the future.

Another noteworthy experiment is the Robotic Refueling Module (RRM), which was delivered to the ISS on STS-135 in July this year.

In 2012, RRM will be used for the first time to test satellite refueling procedures, using specially designed tools operated by the station’s Special Purpose Dexterous Manipulator (SPDM), “Dextre.”

While these are just two examples of high-profile experiments to be conducted on station in 2012, many hundreds more will be ongoing both inside and outside the station, some involving crew participation, some continuously proceeding in automated mode.

tl;dr
drugs lose their potency in space, gets worse the longer they are up there, even if unexpired.
long term space habitation (6 months) leads to vision impairment in astronauts that fixes itself generally. one guy cant see clearly still though :(

bone loss mitigated with osteoporosis drugs
iss to be utilized as a satellite refueling depot of sorts
 
Whoa. Awesome stuff coming from the space station, it would suck to be halfway to Mars and start realizing all of this on your own as an astronaut far away from home :X
 
SpaceX is claiming that, on paper, it should be possible to recover every part of their launch vehicles in an insane way



And imagine having three of those first-stage tanks fly themselves back from a Falcon Heavy launch.. it's just bizarre to picture that


(slightly OFN, but it hasn't been posted here)
 
SpaceX is claiming that, on paper, it should be possible to recover every part of their launch vehicles in an insane way



And imagine having three of those first-stage tanks fly themselves back from a Falcon Heavy launch.. it's just bizarre to picture that


(slightly OFN, but it hasn't been posted here)

Interesting but it'll never end up that way for two reasons.

1. All the extra fuel and control systems add a lot of weight which will cut into it's max payload.

2. KISS principle. They have issues with stuff not making UP into orbit as it is. Now you have to get the whole thing up and then for the way back down have three independent pieces all fitted with retro rockets. Failure rate will be high enough for them to rethink and realize they've over thought things .. just like NASA did with the shuttle.
 
shuttle was hamstrung because 3 different agencies wanted 3 different things from it, so it was a jack of all trades mega bitch beast

spacex currently is not making the rockets fly back boostery and stuff
they're focusing on getting rockets to work, and getting dragon to the station for sweet 2 billion dollar contract money

they hope to eventually make the rockets fully reusable
they're also working on falcon heavy, it doesnt exist yet. As well as the bigger engines for it
 
59 million dollar budget cut in FY2013, with 200 million cut from SLS and 130 million cut from Orion, and $439 million going to commercial partners

thats good and bad
i'd like to see the entire space budget grow $500 million so the SLS and Orion dont need cuts (full funding)
they were hoping to launch crew in 2019, first launch of SLS in 2017. Might slip to 2021 for first crew launch

god i hope commercial vehicles can launch people before 2015 :sigh:

also, boeing wrote up a nice article justifying a L1 space gateway with propellant depot, habitiat areas, and other junk

NASA outline FY13 Budget Proposal amid warnings of political battles to come | NASASpaceFlight.com

Exploration Gateway Platform hosting Reusable Lunar Lander proposed | NASASpaceFlight.com
 
:lol:
deny

though i wish it were true
if china pwned us in space, our legislature would fucking throw up and go rage mode and fund NASA with tons of money

and that would be awesome
 
Bigelow laid off 2/3 of it's workers since without a commercial rocket, it cant do anything
focusing on getting a test module up to ISS this decade to prove tech
though it has 2 modules in space that inflated 5 years ago

i'm all sorts of depressed about space right now
 
those vids are non real time simulators made into cgi. its almost like looking at videogame gameplay thats being put into a real object being sent into space and landing after :bandit:
 
Last edited:
Back
Top